sone(s x 0100
1 i xord

“Buiuwes8oid/Burim

Buoum 0} A|puatly Jou 124 ‘B|qeljas pue Jsey o'l
‘ssoaup [nd-ysnd Ajjensn =

2E 9AIAINS UBD SAPIS 10q
Otid NG 1eym Aq pajiwi| Ajuo paads s

: [PJEpUE)S [ULIO) B UDAS JOU S
pue *** $321A9P JO suol||izeS Aq pas) =1

(1dS) 92e191uf e1oydLIdd [BLIDS

spaepue)s % s]030j01d yi0mjaN

swasAs painqgisiq

#d1-0d1 OSI ddN ‘DL sojdwexy

u01129)9p 40119 ‘Suixa|dn|nw |0JUOD-MO|} ‘UOHBUIWLID)
‘JuawaSeurW JUIWYSI|QRISS UONDAUUOD) [SUONIUN] o
S1SOY U99M)I] BIeP JO I9JSURI] 19DINIS e

J9Ae7 piodsued) :p

spaepues sjodojoid yiompaN

SwalsAs painquisiq

feiskug

spaepue)s ¥ sjodojoid yiompaN

swalsAs painquisiq

| ipoads

1snq [euIa)
01 pa1auuod eleq

P e

==l (1dS) 20®)19)u] [R42ydLIdd [BLIDS

(1dS) spaepue)s g sj020j0.d y10mjaN

swalsAs panqiisiq ==

++ sjodoj01d A1anodsip ‘dos ‘yss ‘dyy ‘jrew 1oy s|gy :sojdwexy e
oiypads so/uonediddy isuonouny «
sweiSoid uoneoijdde 10j ss9008 YI0MIDN 9014495 o

19Ae7 uoneoyddy iz

spaepuejs % 51030j0.d yi0mjaN

swasAs painqgisiq

ST'X ‘dl :sajdwexy e
Jou0d uonsaguod ‘Suiyoums ‘Suissaippe ‘Sunnoy [suonouny «
Jiom)au ay) apisul syadded Jo 1ajsuel] 9DIAISS e

J9Ae7 JaI0M)dN €

spaepueys x sjodojoid yiomaN

swalsAs painqrisiq

.
028

++ sjo>oj04d mau Suiu8isap pue Sunsixa Suiqudsap uaym
‘pasn Ajapim ae ASojounwiay pue sydasuod sy inq

Ny ur a1oymAue payuswajduwi ApreH

PRIUBLIO UORIBUUOD) «
21naIydIe JdAR| £ o

/61 ut (OS]) uoneziueS1Q UONEZIPIEPUE)S [BUOHBUIAIU|
a1 Aq [9pow 2dUaIRJB1 (ISO) UOIIFULDIAU] SWIsAS uadQ
ay) se pazipiepuels
[opOW 92Ud49Jd4 JI0MIBU [SO

spaepueys ’y sj020j0.d yiomjaN

swalsAs painquisiq

R i s s s s e

spaepuejs % sjod0joud yiomiaN

swasAs painguisiq ==

uondAidua gDd ‘uoisIaAu0d apod QS| :sajdwexy e
$921A9p [en1IA ‘uondAIdud ‘UOISIBAUOD BPOD) SUOMIUNS e
uondAi1oua pue Suipod juspuadapul wiofied Jo UOISIACLY :92/AIBS

‘9

spaepuejs p 51030j0.d yiompaN

swasAs painqguisiq

01)U0D [9A9] NUI]) DT
‘(]suueyd-Q ‘@inpadouid ssadde 3
‘(peduefeq ‘ainpadoid ssadde yul
‘(Jodoyouad j01nuod Yul| elep [9A9] YSi1y) DT1QH :sojdwexy «
|011UOD MO} “UOIDDII0D 1011 ‘UOIBZIUOIYDUAS :SUOIIUN o
U] B JOAO SAWRIJ JO JBJSURI) D|QRI[DY :DIIAIS o

4

spaepuejs sjod0joid yiomaN

swalsAs painqLisiq

H 22nua1d

sysompaN soIndwod

Ma1puy ‘winequaue
[€00zwnequauey |

L00Z |[eH 2211Ud1d
swSpered pue sajdi 9002 I[EH->: pa puodas
-utig swaIsAS painquisiq 3 014 painqu1
MoIpUY ‘WnequauE) -s1q pue JuaLNdU0Y o saydiduLLy
[Loozwnequaue | W 'uy-uag
[900zuag]

0661 sAoning Bunndwod Wov 2661 13 puz) pri
Jeuoiny v yoeosdde aunyoew aje)s oy uewSuo] Aajsam uosippy
Sursn soin105 JuesD[O}-IyE) Sunuousdydury swialsAS JUaLINIU0D)
paig 1opouds uodeg

[066L49P1RULPS] [866Lu0oeg]

Ja3deyd siy) 1oy saduaiasRy

swalsAs painquisiq

ane[s J9)SeIN

a1kl)0 dqIXa) ‘DM~ ‘xajdn(g ||n4
(1dS) @2e491uf [esoydLidd [eLios

spaepuejs % sjod0joud yiomaN

swasAs paingLisiq

OdY sojdwexy e
uoneUIWIR) JuaWaSeURW JUIWYSI|QRISS UOISSAS [SUOIOUNS o
swes8oid uoneoidde usamiaq anojeIp aY) JO UOHBUIPIOOD) :9IAISS

19Ae7 UOISSIS :¢

spaepues p s1030j0id yiomjaoN

swasAs painqgLisiq

(s1ay1dwe 3 s10129)9p ‘D|qed) 1oWIBLY] ‘LT’X Sojdwexy o
sjeuis |eodo 10 [BD111D9]9 OJUI S} JO UOISIBAUOD) :SUOHIUNS o
[2UUBYD UoEDIUNWWOD B I9A0
Wiea]s 1Iq MeJ B JO UOISSIWSURI] :92IAI9S

J9Ae7 [earsAyd 3|

spaepuejs sjod0jo1d yiomaN

swalsAs painqLisiq

ANISIOAIUN [BUOIIBN UBI[RNSNY BY] - JBWIWIZ "y dMN

swiaIsAg payngLisig

buepunpal ‘u asouy) Jo duou «
s191snP 0 1 UoIdUNY B AE)S o
elep jeuad uo suonelado paynquisiq s uonduny «

elep painqu)sip uo suonesado uowwod AAelS o

$PaINqLISIP 8q UBD JRYA
SwaysAs panqrisiq

swasAs panqLisiq

J1om se swayshs AuBayur ySiy pue siaindwod-sadns o) ajgeandde 1ng

[auuey) 24q14

spaepuejs % s]030j01d yi0mpaN

swasAs painqgisiq

€708 3331 / y2uIdYylg

spaepues sjodojoid yiompaN

SwalsAs painquisiq

T fLfe0 s s
1aai e AeLjea0r £208 7331 1221544q. 1eisdyg
1050101 559y | (0201014 55990y | 0301014 55929y | [0301014 ss902 .
Heuiaad qurpeiuayor | yn yeyesor Hurt yieLsaui Sowian

yuy 1 B MOJ[E SpIEpUR)S JUSLIND

6661 9IS (VLgI) UONRIOSSY apei] puegiuiul ay) Aq pautyeq

uoneAnop
[uonnquisia puegiuyuy
swajshs painquysiq spaepuejs y sj030)0.d y10mjaN

swaysAs painguisiq swasAs painguisiq

eoydde p

SpomIBU [e:
aumpanyp.e Sun uayo) e sauiqui

s
> ApyBis ose su

aunpayy. ay) 1a14e pajjapow st

U) S31n1e3) JUSIBHIP YUMSS,

(1aa4) 92e4191u] BIRQ PAINQLISI d1q1
/ §°208 3331 / Bury udayor

spaepuejs % 51030j0.d yi0mjaN

y100319n|g
spaepuejs p 51030j0.d yiompaN

swasAs painqgisiq “HT swasAs painqguisiq

ovs

Ssake pOMION SO

P-DYW DV ‘AHd

€708 3331 / @UIBY)]

spaepueys x sjodojoid yiomaN

€708 3331 / @UIBY)]

spaepuejs sjod0joid yiomaN

swalsAs painqrisiq

swalsAs painqLisiq

ferskug [ershug feorshug

i eieq

yomn S eweq

dI/dOL [puueyDAIqL 1SO

m = 1942 1SO 0} [y
T [puueys 24q1d
[spaepuejs p 51030)0.d yi0mjaN

swasAs paingLisiq

(sss@) wnayads peasds aduanbag-1aaq =0
J/VWSD) S2UEPIOAY UOISII[0D UiM $5300Y djdi3niy 9suds Jariie)

708 3331 S€ p.

Jou vase
LL°208 3331 / 32uidylg
spaepueys %y sjod0304d yiompaN

swasAs painqgLisiq

1aai TR etjeor s e

10201014 55230y, | [0301014 ssa00 -~

wneuaad | wn weworor a i eeq
v oo

Soman

d I
212:55

1y

10301014 5500V

uogssag

di 42n0 yjerajddy 1SO

spaepuejs sjod0jo1d yiomaN

swalsAs painqLisiq

spoman

Jiodsuesy

Viodsuely

uorssag

uoneiuasaiy

HomioN HomoN

viodsues wodsues)

vodsuesy

uogssag

uopssag

sasd

o Asiep

0D

sane[s x JO

3 eLoiddy

AeLdjddy dI/ddL e}

spaepue)s ¥ sjodojoid yiompaN

swalsAs painquisiq

uoneonddy oneanddy

1SO d1/dDL 1SO

spaepueys ’y sj020j0.d yiomjaN

swalsAs painquisiq

swalsAs painquisiq

Nnu.vl
2es

i

swalsAs painqLisiq

SA_

w

AP+ (

*aw Jo 19pi0 [eqo|3 ON =1
*PaIaPIO JOU DB SMOJJ [OJJUOD JUDLINDUOD Ul SHUDIAT =1

ECIBAE?)=(2c2)—<()D>(@)D>®D
ECIBAE B =(2c2)—<()D>(9)D =)D

(2 2)— < ()2>(9D>®D
(£c2)- <> (@d=@®D

DYo)xew = !5 (U ‘o8essow) aA1909Y SIUSAS A1 A)
(D ‘a8essaw) puas ! + D = ! suana puas A (e-q)—v(ger)—=quee (D= (D (cq—v(qer)-=qiee(@D=(®D
N h

@Q@IBgA @« B = (< Q=< (9D>(®)D @IBpA @B = (<= <= (D> (®)D
:suonesnduy :suonedduy
1SUONB|D] [BSNED WO} PIALISP SB dw] @2>>®d<qee @2>@®deqee
auwin (jeo18oy) fenyia e Sunuawadwy

swajss paynqrysiq

awi (jed150j) [enyiip
swajss paynqrysiq

awi (jed150j) fenyiip
swajss panqrysia

awn (jed150j) fenyiip
swajsAs panqrysia

swasAs panqLisiq

swaysAs painguisiq swasAs painguisiq swasAs paingLisiq

o< ()D>(9D > (®)D ,=(D>(@D>(®D

6= ()2>(@0=®D

b= (2> (@0 > (®)D (ecq)-v(gee)—cqie
6= ()D>(9D2 =(®D e (0> @0 = @®)d :A2U811IN2U0D JO UONON

=« b9 o ig pue B UGDMID] UOIE[2I [ESNED DALISURL) B 51 213U} o

10 w 2Sessaw auwes aU) J0 Ju2Ad SuIAIIAI B} SAIOUIP G A|IYM
i< (@D =(®D “w 23esso JO JUIAD SUIPUS Y1 SAOUP B e
10 MO|J-{011U0D jeryuanbas duies ay) ut g uey) saea suaddey & o

E-q—<(@0>(@®D .= (@)D > (8D Wig e

:suonediduy

(eq)-v(ger)-=qiee (D= (8D qgle< (9D = (8D

QGIegn(@<8 =(C«<q-<(9)D>(®D
ssuonesyduwy p— g pue & i poYEROSSE sau (JeMIA) 94} 1€ () (2) D puE

‘q pue e usamIaq 01 [esned e Buiag G « & ym
@O>®D«=q-et @2>®D«=qe @2>®D«q<e @O>@®I=q<¢
awi (jeo18oy) jenip awi (jeo18oy) jenyip

swajss paynqrysia

awn (jed1soj) feniip
swajss panqrysia

[8£61 110dwe] dw (fediSo)) fenup
swajsAs panqrysia

swaysks paynqrysia

swasAs painqgisiq swasAs painqgisiq swasAs painqguisiq swasAs painqgLisiq

*s955920.4d J& 0) 98essow-aseajay puas g
UOISNIXD [eNINUI JO S50] 0 SPE3] UONE|OIA 150] ase sofessaw oN
uoISnPXa (eMnu o S50 . 03 pue uMOU 1 7 o uo13a1 [eN11D AR pUE JR)UT Y
& a8essow mau [nun Aejap ;;sanbayumo # (2nanpDisanbay) doj apym ‘¢
Ajuo spsemioy
(s9pou 10miau [je yoeas 0} afessaw e 1oy sael 1t awn ay) Sutaq 1) 77 Aq Aejaq 7
g g paisnlpe s1 30> ,awi-|eal,

awip d1U0JOUOW =1 awny tepudpe) =
duinssy o 1
-uo18a1 [ed1d ay) Jo Ajidajur Jou Ing ‘ssaulIey 193448 SILIP HI0D) wwM“_m\Mv‘mu_mNMumbw\N.__ﬂo\m\E
(swsiueydaw 1sedpeoiq Suikojduwa Aq parosdu Apuediyiusis ag ues) “s3559201d JjE 0) 359nbayUMQ puds P 1P 1 320)3 2wn-[eay,
sagessow (| — N)z Asanbau 1ad syuswaiinbal suonedlUNWWO) (e Aq pa1api0) ananDIsanbay [e30] 0) 159nbAYUMO PPY

y_g
“dwe)s-awi) Jua1IND Yoe)e pue 1sanbayumQ a1easd ‘|

T ESOS)

B d y_t

> (e+1) - e+ o I=3 5 (9+1)
+7 :Aejop asea|al [BWILIN o ' (Do-@)> 7

7 :Aejop 1sonbau fewiuiy o

ananisanbay [ed0] ui spsanbay Suipuodsaiiod aRRA
20[9AI| OU ‘UOIIBAIR)S [BNPIAIPUL OU 3D0|PEIp ON o

:so8essow asea|2y POAIRIDI A

(awn Aq pa1ap1o) ananpisanbay [e0] 0) ppY :s1s9nbady PaAdaL A

sisAjeuy sown A ‘uonezIUOIYIUAS-21 B a3uBIaJ1 JeinGa1 AQ P 0P ay) Sumiasay

SYD0[2 PAZIUOIYDUAS YpIm suoi§au [ednLd panqLisiq
swapsAs paynquysiq

Se PAULRP @ PP HOOP [BUIXEN 1se paulyap @ U YO0[> [ewixey

HEZIUOIYIUAS-01 dW 29UBI91 1BINFo1 AQ LI Y0P By Fumasey
SY20[0 PaZIUOIYDUAS yJIm suoiSad [edntid painqLisiq (uo prewaoy) YDO[D ,SUIIY-[BDI, B DZIUOIYDUAS (ruon2a21p-19) YD 0D ,SUWIY-[BD, B DZIUOIYIUAS
swasAs paynqrysiq swajsAs painqrysiq

SwaysAs panqrysiaq

SwalsAs painquisiq

swalsAs painqrisiq swalsAs painqLisiq swalsAs painqLisiq

(suoneaydde 123ndwos u Wdd 07 [ea1dAr)
(UOI||IN-194-5)1Bd) Wdd Se payidads uayo (uS1s3p P08 & Jo ased uy) saseaap ainjie; 12|dwod Jo pooyie] =1
$952210U] S2IN]IE) [ENPIAIPUL JO POOYIAYIT =1

@5 0 m:u S, e+ D) oI} [ENYIIA B 3)BIID) =1 SJUDAD JO 20udnbas uo paseg saanpiey [enaeg € 90UBWLIONA 19PISUOT) 51
Anjiqeeos 1opisuo) =1

SE PAULAP @ WP 0P [BWIXE i920]2 dZIUOIYDUAS =1 DWW} PaJBYS B UO PISE, esoduwior o1 s <2 .
i$20] . Y S np Y P q aseq-owny aspaiduit 10 Suissi 7 119y 19pISU0D) =1

10110 [BJUSD UBY) Jay)el uonesadoo)) 1

I PUp o Awouolne [ed0 Jo 92139p ySiy / Surdnos-ag arsiyoy =

219K auop am a1y =1
Aapre|nUeIB [ewiulu © 51 21941 PUE ASUDP 10U S| W 0~ ASIP »

:s9130)R.1)S DANRUIDYE OM] (uonedtunwwod) skefap ajqedtpasdun -y
o
Y002 owWiy-edy,

swaysAs paynqLisip ur swi | swaysAs paynquisip ul euswousyd uowwod dwos

swalsAs painqysia

eLI9)LID USISap uowwo)
swasAs panquysia swasAs painquysia

SwaIsAs painqusia

swalsAs painquisiq

swalsAs painquisiq swalsAs painquisiq

== swalsAs painqLisiq

=32

Distributed Systems

Distributed Systems
Distributed critical regions with logical clocks

 Vtimes: V received Requests:
Add to local RequestQueue (ordered by time)
Reply with Acknowledge or OwnRequest
¢ Vtimes: V received Release messages:
Delete corresponding Requests in local RequestQueue

1. Create OwnRequest and attach current time-stamp.
Add OwnRequest to local RequestQueue (ordered by time).
Send OwnRequest to all processes.
2. Wait for Top (RequestQueue) = OwnRequest & no outstanding replies
3. Enter and leave critical region
4.Send Release-message to all processes.

== Distributed Systems

Distributed Systems
Electing a central coordinator (the Bully algorithm)

Any process P which notices that the central coordinator s gone, performs:

1. P sends an Election-message
to all processes with higher process numbers.
2. P waits for response messages.
e 1f no one responds after a pre-defined amount of time:
P declares itself the new coordinator and sends out a Coordinator-message to all.
v If any process responds,
then the election activity for P is over and P waits for a Coordinator-message
All processes P; perform at all times:
« If P; receives a Election-message from a process with
a lower process number, it responds to the originating process
and starts an election process itself (if not running already).

Distributed Systems

Distributed Systems
Distributed states

A consistent global state (snapshot) is define by a unique division into:

* “The Past” P (events before the snapshot):

(e EP)Ale; > e) =>e EP
* “The Future” F (events after the snapshot):

(e ERAN(e;~e)=>e, EF

Distributed Systems

Distributed Systems
Distributed states

& Running the snapshot algorithm:

+ Observer-process Py (any process) creates a snapshot token t, and saves its local state s,
+ Pysends t, to all other processes.

1
| -

Distributed Systems

Distributed Systems
Distributed critical regions with logical clocks

Analysis

* No deadlock, no individual starvation, no livelock.

¢ Minimal request delay: N — 1 requests (1 broadcast) + N — 1 replies.

¢ Minimal release delay: N — 1 release messages (or 1 broadcast).

« Communications requirements per request: 3(N — 1) messages
(or N —1 messages + 2 broadcasts).

 Clocks are kept recent by the exchanged messages themselves.

Assumptions:

* No messages are lost & violation leads to stall.

Distributed Systems

Distributed Systems
Distributed states

= How to read the current state of a distributed system?

Distributed Systems

Distributed Systems
Distributed states

= How to read the current state of a distributed system?

Instead: some entity probes and collects local states.
s What state of the global system has been accumulated?
w Sorting the events into past and future events.

=3 Distributed Systems

Distributed Systems
Distributed states

1 Running the snapshot algorithm:

¥/ P; which receive t, (as an individual token-message, or as part of another message):
« Save local state s; and send s; to Py

« Attach , to all further messages, which are to be sent to other processes.
« Save t, and ignore all further incoming t,'s

Distributed Systems

Distributed Systems
Distributed critical regions with a token ring structure

1. Organize all processes in a logical or physical ring topology
2.Send one token message to one process

3.V times, Vprocesses: On receiving the token message:
1. If required the process
enters and leaves a critical section (while holding the token).
2. The token is passed along to the next process in the ring.

Assumptions:
« Token is not lost s violation leads to stall
(a lost token can be recovered by a number of means - e.g. the ‘election’ scheme following)

Distributed Systems

Distributed Systems
Distributed states

= How to read the current state of a distributed system?

- 27 | 2 25 il
SEE- EE B
= ETEN B
T 7 [> ¥ % v o
Instead: some entity probes and collects local states.
& What state of the global system has been accumulated?

I

Distributed Systems

Distributed Systems
Distributed states

= How to read the current state of a distributed system?

I 3 e A S M 5
Instead: some entity probes and collects local states.
& What state of the global system has been accumulated?
w Event in the past receives a message from the future!
Division not possible & Snapshot inconsistent!

Distributed Systems

Distributed Systems
Distributed states

= Running the snapshot algorithm:

« /P, which previously received t, and receive a message m without t,:

« Forward m to Py (this message belongs to the snapshot).

Distributed Systems

Distributed Systems
Distributed critical regions with a central coordinator

A global, static, central coordinator
= Invalidates the idea of a distributed system
w Enables a very simple mutual exclusion scheme
Therefore:
* A global, central coordinator is employed in some systems ... yet ...

e ... if it fails, a system to come up with a new coordinator is provided.

Distributed Systems

Distributed Systems
Distributed states

1= How to read the current state of a distributed system?

. e e e
R =_ETHI
T T 5 ¥
Instead: some entity probes and collects local states.
& What state of the global system has been accumulated?

= Connecting all the states to a global state.

Distributed Systems

Distributed Systems
Snapshot algorithm

Observer-process Py (any process) creates a snapshot token t, and saves its local state s,
Py sends £, to all other processes.

P, which receive t, (as an individual token-message, or as part of another message)

« Save local state s; and send s; to Py,

« Attach , to all further messages, which are to be sent to other processes.

« Savet, and ignore all further incoming t's.

¥/ P; which previously received t, and receive a message m without t,:

« Forward m to Py (this message belongs to the snapshot).

Distributed Systems

Distributed Systems
Distributed states

= Running the snapshot algorithm:

« /P, which receive t, (as an individual token-message, or as part of another message)
« Savelocal state s; and send s; to Py

« Attach £, to all further messages, which are to be sent to other processes.
« Save t, and ignore all further incoming t,'s.

Distributed Systems

Distributed Systems
Distributed states

& Running the snapshot algorithm:

« Save t, and ignore all further incoming t's.

Distributed Systems

Distributed Systems
Consistent distributed states
Why would we need that?
* Find deadlocks.
 Find termination / completion conditions.
* ... any other global safety of liveness property.
* Collect a consistent system state for system backup/restore.

* Collect a consistent system state for further pro-
cessing (e.g. distributed databases).

Distributed Systems

Distributed Systems
A distributed server (load balancing)

Distributed Systems

accept (Print_Job : in Job_Type; Server_Id : in Task_Id) do
if Print_Job in AppliedForJobs ther
if Server_Id = Current_Task then
(Print_Job);
elsif Server_Id > Current_Task then
(Print_Job);
(Print_Job; Server_Td);
else
null; -- removing the contention message from ring
end if;
else
Turned_Down_Jobs := Turned_Down_Jobs + Print_Job;
(Print_Job; Server_Td);
end if;
end Contention;
terminate;
end selec
end loop;
end Print_Server;

Distributed Systems

Distributed Systems
Distributed states

& Running the snapshot algorithm:

« Finalize snapshot

Distributed Systems

Distributed Systems
A distributed server (load balancing)

Distributed Systems

Distributed Systems
A distributed server (load balancing)

Job_Completed (

Distributed Systems

Distributed Systems
Transactions

w Concurrency and distribution in systems
with multiple, interdependent interactions?

w Concurrent and distributed
client/server interactions
beyond single remote procedure calls?

Distributed Systems

Distributed Systems
Distributed states

= Running the snapshot algorithm:

wr Sorting the events into past and future events.

= Past and future events uniquely separated s Consistent state

Distributed Systems

Distributed Systems
A distributed server (load balancing)

Distributed Systems

Distributed Systems
A distributed server (load balancing)

with Ada.Task_Identification; use Ada.Task_Identification;

task type Print_Server is
entry Send_To_Server (Print_Job : in Job_Type; Job_Done : out Boolean);
entry Contention (Print_Job : in Job_Type; Server_Id : in Task_Id);
end Print_Server;

Distributed Systems

Distributed Systems
Transactions

Definition (ACID properties)

+ Atomicity: All or none of the sub-operations are performed.
Atomicity helps achieve crash resilience. If a crash occurs, then it is possible
to roll back the system to the state before the transaction was invoked
Consistency: Transforms the system from one consistent state to another consistent state.
Isolation: Results (including partial results) are not revealed unless and until
the transaction commits. I the operation accesses a shared data object,
invocation does not interfere with other operations on the same object.
Durability: After a commit, results are guaranteed to persist,
even after a subsequent system failure.

Distributed Systems

Distributed Systems
Snapshot algorithm

Termination condition?

Either

* Make assumptions about the communication delays in the system.

« Count the sent and received messages for each process (include this in the lo-
cal state) and keep track of outstanding messages in the observer process.

Distributed Systems

Distributed Systems
A distributed server (load balancing)

Send_To_Group (Job)

Distributed Systems

Distributed Systems
A distributed server (load balancing)

task body Print_Server is

accept Send_To_Server (Print_Job : in Job_Type; Job_Done : out Boolean) do
if not Print_Job in Turned_Down_Jobs then
if Not_Too_Busy then
Applied_For_Jobs := Applied_For_Jobs + Print_Job;
Print_Job
requeue ;
else
Turned_Down_Jobs := Turned_Down_Jobs + Print_Job;
end if;
end if;
end Send_To_server;

Distributed Systems

Definition (ACID properties):

Distributed Systems
Transactions

Atomic operations ey
spanning multiple processes? | How to ensure consistency |
— PP J ina distributed system? |
Atomicity: All or none of the sub-operations are performed. —
Atomicity helps achieve crash resilience. If a crash occurs, then itis possible

to roll back the system to the state before the transaction was invoke

Consistency: Transforms the system from one consistent state to another consistent state.

Isolation: Results (including partial results) are not revealed unless and until
the transaction commits. If the operation accesses a shared data object
invocation does not interfere with other operations on the same object. | g 1o cqpies?
Durability: After a commit, results are guaranteed to persist, —
even after a subsequent system failure.
\ Actual isolation and
What hardware doe | efficient concurrency?| Actual isolation or the
eed toassume?___| appearance of solation? |

Distributed Systems

Distributed Systems
Transactions

A closer look inside transactions:

Transactions consist of a sequence of operations.

If two operations out of two transactions can be performed in any order with the
same final effect, they are commutative and not critical for our purposes.

Idempotent and side-efiect free operations are by definition commutative.
All non-commutative operations are considered critical operations

Two critical operations as part of two different transactions while
affecting the same object are called a conflicting pair of operations,

Distributed Systems

Distributed Systems
Serializability

w Serializable

Distributed Systems

Distributed Systems
Serializability

|

Three conflicting pairs of operations with the same order of execution
(pair-wise between processes)

The order between processes also leads to a global order of processes.

w Serializable

Distributed Systems

Distributed Systems
Transactions

Acloser look at multiple transactions:
« Any sequential execution of multiple transactions
will fulfil the ACID-properties, by definition of a single transaction.

A concurrent execution (or ‘interleavings’) of multiple transactions
might fulfil the ACID-properties.

If a specific concurrent execution can be shown to be equivalent to a specific sequential
execution of the involved transactions then this specific interleaving is called ‘serializable’.

If a concurrent execution (interleaving’) ensures that no transaction ever encounters
an inconsistent state then it is said to ensure the appearance of isolation

Distributed Systems

Distributed Systems
Serializability

v, -)

« Two conflicting pairs of operations with different orders of executions

= Not serializable.

Distributed Systems

Distributed Systems

Distributed Systems
Serializability

« Three conflicting pairs of operations with the same order of execution
(pair-wise between processes).

w Serialization graph is cyclic.
w Not serializable

Distributed Systems
Serializability

« Three conflicting pairs of operations with the same order of execution

(pair-wise between processes).

« The order between processes does no longer lead to a global order of processes.
ww Not serializable

Distributed Systems

Distributed Systems
Transaction schedulers

Three major designs:

¢ Locking methods:

Impose strict mutual exclusion on all critical sections.

¢ Time-stamp ordering:

Note relative starting times and keep order dependencies consistent.
* “Optimistic” methods:

Go ahead until a conflict is observed — then roll back.

Distributed Systems

Distributed Systems

Achieving serializability

w For the serializability of two transactions it is necessary and sufficient

for the order of their invocations
of all conflicting pairs of operations to be the same
for all the objects which are invoked by both transactions.

(Determining order in distributed systems requires logical clocks.)

Distributed Systems

Distributed Systems
Serializability

Three conflicting pairs of operations with the same order of execution
(pair-wise between processes).

The order between processes also leads to a global order of processes.

Distributed Systems

Distributed Systems
Achieving serializability

e For the serializability of two transactions it is necessary and sufficient

for the order of their invocations
of all conflicting pairs of operations to be the same
for all the objects which are invoked by both transactions.
« Define: Serialization graph: A directed graph;
Vertices i represent transactions T;;

Edges T, T, represent an established global order dependency
between all conflicting pairs of operations of those two transactions.

w For the serializability of multiple transactions it is
necessary and sufficient
that the serialization graph is acyclic.

=3 Distributed Systems

Distributed Systems
Transaction schedulers — Locking methods

Locking methods include the possibility of deadlocks v careful from here on out ...

+ Complete resource allocation before the start and release at the end of every transaction:
w This will impose a strict sequential execution of all critical transactions.
(strict) two-phase locking:
Each transaction follows the following two phase pattern during its operation
« Growing phase: locks can be acquired, but not released
« Shrinking phase: locks can be released anytime, but not acquired (two phase locking)
or locks are released on commit only (strict two phase locking).
w Possible deadlocks
& Serializable interleavings
w Strict isolation (in case of strict two-phase locking)
Semantic locking: Allow for separate read-only and write-locks

w Higher level of concurrency (see also: use of functions in protected objects)

Distributed Systems

Distributed Systems
Serializability

Two conflicting pairs of operations with the same order of execution

Distributed Systems

Distributed Systems
Serializability

Three conflicting pairs of operations with the same order of execution
(pair-wise between processes).
« The order between processes also leads to a global order of processes.

w Serializable

Distributed Systems

Distributed Systems
Serializability

« Three conflicting pairs of operations with the same order of execution
(pair-wise between processes).

= Serialization graph is acyclic.

= Serializable

Distributed Systems

Distributed Systems
Transaction schedulers — Time stamp ordering

Add a unique time-stamp (any global order criterion) on every transaction upon start.
Each involved object can inspect the time-stamps of all requesting transactions.

 Case 1: A transaction with a time-stamp /ater than all currently active transactions applies:
w the request is accepted and the transaction can go ahead.
* Alternative case 1 (strict time-stamp ordering):
v the request is delayed until the currently active earlier transaction has committed.
« Case 2: Atransaction with a time-stamp earlier than all currently active transactions applies:
= the request is not accepted and the applying transaction is to be aborted.
& Collision detection rather than collision avoidance
& No isolation e Cascading aborts possible.
& Simple implementation, high degree of concurrency
—also in a distributed environment, as long as a global event order (time) can be supplied.

Distributed Systems
Distributed Systems

Transaction schedulers - Optimistic control

1. Read & execute:
dow copy of e n
perform all required operations on the shadow
2. Validate:

d

copy and locally (i.e. in isolation).

After local commit, check all occurred interleavings for serializability.
3. Update or abort;

3a. If serializability could be ensured in step 2 then all results of involved transactions

Ived objects - in dependency order of the transactions.

3b. Otherwise: destroy shadow copies and start over with the failed transactions.

Distributed Systems
Distributed Systems
Two phase commit protocol

Start up (initialization) phase

Distributed
Transaction

Distributed Systems
Distributed Systems

Two phase commit protocol

Start up (initialization) phase

copy
Setup & Start
operations

Distributed Systems
Distributed Systems

Two phase commit protocol

Phase 2: Implement results
Everybody destroys
shadows

Distributed Systems

Distributed Systems

Transaction schedulers - Optimistic control

How to create a consistent copy? |
1. Read & execute: s S——
Create a shadow copy of all inv ts and
perform all required operations on the shadow copy and locally (i.e. in isolation).
Validate:

Fullisolationand |

maximal concurrency! |

After local commit, check all occurred interleavings for serializability.
Update or abort: How to up
3a. If serializability could be ensured in step 2 then all reSUITS GT VoIV Trans:
to all involved objects - in dependency order of the transaction:
3b. Otherwise: destroy shadow copies and start over with the failed transactions.

Distributed Systems

Distributed Systems
Two phase commit protocol
Start up (initialization) phase

Determine
coordinator

Two phase commit protocol

Phase 1: Determine result state

Coordinator requests
and assembles votes:

“"Commit" or "Abort" @

Distributed Systems
Distributed Systems
Two phase commit protocol

Phase 2: Implement results

Everybody reports
"Committed"

all objects consistently?

Distributed Systems

Distributed Systems
Distributed transaction schedulers
Three major designs:
¢ Locking methods:
Impose strict mutual exclusion on all critical sections.
¢ Time-stamp ordering:
Note relative starting times and keep order dependencies consistent.
* “Optimistic” methods:

Go ahead until a conflict is obse —then roll back.

w How to implement “ "and” " operations

in a distributed environment?

Distributed Systems

Distributed Systems
Two phase commit protocol
Start up (initialization) phase

Determine
coordinator

Distributed Systems

Distributed Systems
Two phase commit protocol

Phase 2: Implement results

Coordinator instructs 4

everybody to "Commit” @

Distributed Systems
Distributed Systems

Two phase commit protocol
or Phase 2: Global roll back

Distributed Systems
Distributed Systems
Two phase commit protocol
Start up (initialization) phase

Data

Ring of servers

Distributed Systems
Distributed Systems

Two phase commit protocol
Start up (initialization) phase

P,

Setup & Start
operations

Distributed Systems
Distributed Systems

Two phase commit protocol

Phase 2: Implement results

Distributed Systems
Distributed Systems
Two phase commit protocol
or Phase 2: Global roll back

Everybody destroys
shadows

Distributed Systems
Distributed Systems

Two phase commit protocol

Phase 2: Report result of distributed transaction

Coordinator reports toclient: @ i a

"Committed" or"Aborted"

Distributed Systems
Distributed Systems
Redundancy (replicated servers)

Start-up (initialization) phase

Ring of identical
servers

Distributed Systems
Distributed Systems

Redundancy (replicated servers)

Coordinator sends
job both ways

Distributed Systems
Distributed Systems
Redundancy (replicated servers)
°y i Ses

e C

Coordinator also
received two messages
and processes job

= Distributed Systems Distributed Systems : Distributed Systems

Distributed Systems Distributed Systems Distributed Systems

Distributed transaction schedulers Redundancy (replicated servers) Redundancy (replicated servers)

Evaluating the three major design methods in a distributed environment: Premis:

. A crashing server computer should mpromise the functi of the system Stages of each server:
¢ Locking methods: i== No aborts. (full fault tolerance)

Large overheads; Deadlock detection/prevention required. Assumptions & Means:

* Time-stamp ordering: == Potential aborts along the way. * kcompu erver cluster might crash without | Job message received by allactive servers
Recommends itself for distributed applications,

are taken locally and communication overhead is relatively s 5 B

e Replication: at least k + 1 servers. -

Received erable
The server cluster can reorga
oup ma Job processed locally

& Hot stand-by compor
ob message received locally

* “Optimistic” methods: =~ Aborts or commits at the very end.
Maximizes concurrency, but also data replication. The server is described fully by the current state and the sequence of me: Processed
= State machines: we have to implement consistent state adjustments (re-org

ct“da ge body of literature on this topi and consistent message passing (order needs o be i

. ta
(see: distributed da / operating systems / shared memory / cache management,
[Schneider1990]

Distributed Systems Distributed Systems : Distributed Systems

Distributed Systems Distributed Systems Distributed Systems
Redundancy (replicated servers) Redundancy (replicated servers) Redundancy (replicated servers)
Start-up (initialization) phase Startup (initialization) phase Coordinator receives job message

Send Job

Determine Coordinator
coordinator determined

Distributed Systems Distributed Systems : Distributed Systems

Distributed Systems Distributed Systems Distributed Systems

Redundancy (replicated servers) Redundancy (replicated servers) Redundancy (replicated servers)

») vervbody (e coordin <<o

Server

Server

All server detect
two job-messages

(but nobody : two job-messages ojob-messag
knows that) @ & processes job everybody
processes job

Everybody received job First server detects

=2 Distributed Systems . Distributed Systems . Distributed Systems

Distributed Systems Distributed Systems Summary

Redundancy (replicated servers)

Redundancy (replicated servers) Distributed Systems

ash, new servers joining, or current servers leaving. * Networks
opolo

) - c network standards
Coordinator delivers S r
his local result

onfiguration mess d clocks, virtual (logical) times
« Distributed critical regions (synchronized, logical, token ring)
1. Wait for local job to complete or time-out.
nsistent state ;. Distributed systems
1 ring, send local state around the ring * Elections
4. Ifastate S with j > edthen s; < S Distribut
5. Elect coordinator Distributed servers (replicates, distributed processing, distributed commits)

6. Enter ‘Coordinator or ‘R Transactions (ACID properties, serializable interleavings, transaction schedulers)

